Bromeliad population genetics reveals species cohesion against the odds.
نویسندگان
چکیده
A traditional view of the nature of species holds that populations within species maintain genetic cohesion through substantial intraspecific gene flow and that the whole genome of a species is protected from interspecific gene flow by strong reproductive isolation. Both aspects of this view have been challenged. Reproductive barriers between recently evolved species can be incomplete and permeable to gene flow, and in geographically structured environments, intraspecific gene flow may be limited. Whether species that combine these features can evolve as cohesive evolutionary units remains an open question. In this issue of Molecular Ecology, Palma-Silva et al. (2011) investigate this issue in an ideal system. They characterize gene flow within and between four sympatric species of Pitcairnia bromeliads on isolated rock outcrops, called inselbergs, in Brazil (Fig. 1). They show that despite very little intraspecific gene flow between inselbergs and substantial introgression, each species manages to maintain genetic integrity. Furthermore, certain regions of the genome appear to introgress more easily than others. This, taken together with previous studies of premating isolation in these species (Wendt et al. 2001, 2002), suggests that their reproductive barriers are strong but permeable. These data reinforce recent work suggesting that speciation must be thought of not as a whole-genome phenomenon but rather on a locus-by-locus basis, with neutral loci readily exchanged between species, but genes that contribute to reproductive isolation, so-called speciation genes, relatively unlikely to introgress (Wu 2001; Feder & Nosil 2010; Rieseberg & Blackman 2010; Nosil & Schluter 2011).
منابع مشابه
Microsatellite loci for Orthophytum ophiuroides (Bromelioideae, Bromeliaceae) species adapted to neotropical rock outcrops1
UNLABELLED PREMISE OF THE STUDY Microsatellite primers were developed for Orthophytum ophiuroides, a rupicolous bromeliad species endemic to neotropical rocky fields. These microsatellite loci will be used to investigate population differentiation and species cohesion in such fragmented environments. The loci were tested for cross-amplification in related bromeliad species. • METHODS AND R...
متن کاملHost niche may determine disease-driven extinction risk
The fungal pathogen Batrachochytrium dendrobatidis (Bd) drives declines and extinctions in amphibian communities. However, not all regions and species are equally affected. Here, we show that association with amphibian aquatic habitat types (bromeliad phytotelmata versus stream) across Central America results in the odds of being threatened by Bd being five times higher in stream microhabitats....
متن کاملSympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs.
The roles of intra- and interspecific gene flow in speciation and species evolution are topics of great current interest in molecular ecology and evolutionary biology. Recent modelling studies call for new empirical data to test hypotheses arising from the recent shift from a 'whole-genome reproductive isolation' view to a 'genic' view of species and speciation. Particularly scarce (and thus of...
متن کاملPossible combined effects of climate change, deforestation, and harvesting on the epiphyte Catopsis compacta: a multidisciplinary approach
Climate change, habitat loss, and harvesting are potential drivers of species extinction. These factors are unlikely to act on isolation, but their combined effects are poorly understood. We explored these effects in Catopsis compacta, an epiphytic bromeliad commercially harvested in Oaxaca, Mexico. We analyzed local climate change projections, the dynamics of the vegetation patches, the distri...
متن کاملBromeliad Selection by Two Salamander Species in a Harsh Environment
Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 20 15 شماره
صفحات -
تاریخ انتشار 2011